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Abstract 

Applications for large-scale data analysis use such 

techniques as parallel DBMS, MapReduce (MR) 

paradigm, and columnar storage. In this paper we focus 

in a MapReduce environment. The aim of this work is 

to compare the different join algorithms and designing 

cost models for further use in the query optimizer. 

 

1 Introduction 

 

Data-intensive applications include large-scale data 

warehouse systems, cloud computing, data-intensive 

analysis. These applications have their own specific 

computational workload. For example, analytic systems 

produce relatively rare updates but heavy select 

operation with millions of records to be processed, often 

with aggregations.  

      There are the following architectures that are used 

to analyze massive amounts of data: MapReduce  

paradigm, parallel DBMSs, column-wise store, and 

various combinations of these approaches.  

      Applications of this type process multiple data sets. 

This implies need to perform several join operation. It’s 

known join operation is one of the most expensive 

operations in terms both  I / O and CPU costs. 

     Unfortunately, join algorithms is not directly 

supported in MapReduce. There are some approaches to 

solve this problem by using a high-level language 

PigLatin, HiveQL for SQL queries or implementing 

algorithms from research papers.  The aim of this work 

is to generalize and compare existing equi-join 

algorithms with some optimization techniques and build 

cost model which could be used in a query optimizer for 

a distributed DBMS with MapReduce.   

     This paper is organized as follows the section 2 

describe state of the art. Join algorithms and some 

optimization techniques were introduced in 3 section. 

The designing of cost models for join algorithms are 

presented in 4 section. Performance evaluation will be 

described in 5 section. Finally, future direction and 

some discussion of experiments will be given.   

2 Related work 

2.1 Architectural Approaches 

Column storage is one of the architectural approaches to 

store data in columns, that the values of one field are 

stored physically together in a compact storage area. 

Column storage strategy improves performance by 

reducing the amount of unnecessary data from disk by 

excluding the columns that are not needed. Additional 

gains may be obtained using data compression. Storage 

method in columns outperforms row-based storage for 

workloads typical for analytical applications, which are 

characterized by heavy selection operation from 

millions of records, often with aggregation and by 

infrequent update operation. For this class of workloads 

I/O is major factor limited the performance. 

Comparison of column-wise and row-wise stores 

approaches is presented in [1]. 

      Another architectural approach is a software 

framework MapReduce. Paradigm MapReduce was 

introduced in [11] to process massive amounts of 

unstructured data.  

     Originally, this approach was contrasted with a 

parallel DBMS. Deep analysis of the advantages and 

disadvantages of these two architectures was presented 

in [25,10].  

     Later, hybrid systems appeared in [9, 2]. There are 

three ways to combine approaches MapReduce and 

parallel DBMS.  

 MapReduce inside a parallel DBMS. The main 

intention is to move computation closer to 

data. This architecture can be exemplified with 

hybrid database Greenplum with MAD 

approach [9].  

  DBMS inside MapReduce. The basic idea is 

to connect multiple single node database 

systems using MapReduce as the task 

coordinator and network communication layer. 

An example is a hybrid database HadoopDB 

[2].  

  MapReduce aside of the parallel DBMS. 

MapReduce is used to implement an ETL 

produced data to be stored in parallel DBMS. 

Proceedings of the Spring Young Researcher's 

Colloquium On Database and Information Systems 

SYRCoDIS, Moscow, Russia, 2012 
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This approach is discussed in [28] Vertica, 

which also supports the column-wise store. 

      Another group of hybrid systems combines 

MapReduce with column-wise store. MapReduce and 

column-wise store are effective in data-intensive 

applications. Hybrid systems based on this two 

techniques may be found in [20,13]. 

 

2.2 Algorithms for Join Operation 

Detailed comparison of relational join algorithms was 

presented in [26]. In our paper, the consideration is 

restricted to a comparison of joins in the context of 

MapReduce paradigm.  

     Papers which discuss equi-join algorithms can be 

divided into two categories which describe join 

algorithms and multi join execution plans.  

The former category deals with design and analyses join 

algorithm of two data sets. A comparative analysis of 

two-way join techniques is presented in [6, 4, 21].  The 

cost model for two-way join algorithms in terms of cost 

I/O is presented in [7, 17].  

     The basic idea of multi-way join is to find strategies 

to combine the natural join of several relations. 

Different join algorithms from relation algebra are 

presented in [30]. The authors introduce the extension 

of MapReduce to facilitate implement relation 

operations. Several optimizations for multi-way join are 

described in [3, 18]. Authors introduced a one-to-many 

shuffling strategy. Multi-way join optimization for 

column-wise store is considered in [20, 32]. 

     Theta-Joins and set-similarity joins using 

MapReduce are addressed in [23] and [27] respectively.  

 

2.3 Optimization techniques and cost models   
 

In contrast to the sql queries in parallel database, the  

MapReduce program contains user-defined map and 

reduce functions.  Map and reduce functions can be 

considered as a black-box, when nothing is known 

about these functions, or they can be written on sql-like 

languages, such as HiveQL, PigLatin, MRQL, or sql 

operations can be extracted from functions on semantic 

basis. Automatic finding good configuration settings for 

arbitrary program offered in [16]. Theoretical designing 

cost models for arbitrary MR program for each phase 

separately presented in [15]. If the MR program is 

similar to the semantics of SQL, it allows us to 

construct a more accurate cost model or adapt some of 

the optimization techniques from relational databases. 

HadoopToSQL [22] allows to take advantage of two 

different data storages such as SQL database and the 

text format in MapReduce storage and to use index at 

right time by transforming the MR program to SQL. 

Manimal system [17] uses static analysis for detection 

and exploiting selection, projection and data 

compression in MR programs and if needed to employ 

B+ tree index. 

New SQL-like query language and algebra is presented 

in [12]. But they are needed cost model based on 

statistic.  Detailed construction of the model to estimate 

the I/O cost for each phase separately is given in [24].  

Simple theoretical considerations for selecting a 

particular join algorithm are presented in [21].  Another 

approach [7] for selecting join algorithm is to measure 

the correlation between the input size and the join 

algorithm execution time with fixed cluster 

configuration settings. 

3 Join algorithms and optimization 

techniques 

 

 In this section we consider various techniques of two-

way joins in MapReduce framework. Join algorithms 

can be divided into two groups: Reduce-side join and 

Map-side join. The pseudo code presented in Listings, 

where R – right dataset, L – left dataset, V – line from 

file, Key – join key, that was parsed from a tuple, in this 

context tuple is V. 

 

3.1 Reduce-Side join 

 

Reduce-side join is an algorithm which performs data 

pre-processing in Map phase, and direct join is done 

during the Reduce phase. Join of this type is the most 

general without any restriction on the data. Reduce-side 

join is the most time-consuming, because it contains an 

additional phase and transmits data over the network 

from one phase to another. In addition, the algorithm 

has to pass information about source of data through the 

network. The main objective of the improvement is to 

reduce the data transmission over the network from the 

Map task to the Reduce task by filtering the original 

data through semi-joins. Another disadvantage of this 

class of algorithms is the sensitivity to the data skew, 

which can be addressed by replacing the default hash 

partitioner with a range partitioner. 

There are three algorithms in this group:  

 General reducer-side join,  

 Optimized reducer-side join,  

 the Hybrid Hadoop join. 

      General reducer-side join is the simplest one. The 

same algorithms are called Standard Repartition Join in 

[6]. The abbreviation is GRSJ. 

  
Listing 1: GRSJ. 

This algorithm has both Map and Reduce phases. In the 

Map phase, data are read from two sources and tags are 

attached to the value to identify the source of a 

key/value pair. As the key is not effecting by this 

Map (K: null, V from R or L) 

      Tag = bit from name of R or L; 

      emit (Key, pair(V,Tag)); 

 

Reduce (K’: join key, LV: list of V with key K’) 

      create buffers Br and Bl for R and L; 

      for t in LV do 

              add t.v to  Br or Bl by t.Tag; 

      for r in Br do  

              for l in Bl do 

               emit (null, tuple(r.V,l.V)); 
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tagging, so we can use the standard hash partitioner. In 

Reduce phase, data with the same key and different tags 

are joined with nested-loop algorithm. The problems of 

this approach are that the reducer should have sufficient 

memory for all records with a same key; and the 

algorithm sensitivity to the data skew.  

      Optimized reducer-side join enhances previous 

algorithm by overriding sorting and grouping by the 

key, as well as tagging data source. Also known as 

Improved Repartition Join in [6], Default join in [14]. 

The abbreviation is ORSJ. In the algorithm all the 

values of the first tag are followed by the values of the 

second one. In contrast with the General reducer-side 

join, the tag is attached to both a key and a value. Due 

to the fact that the tag is attached to a key, the 

partitioner must be overridden in order to split the nodes 

by the key only. This case requires buffering for only 

one of input sets. Optimized reducer-side join inherits 

major disadvantages of General reducer-side join 

namely the transferring through the network additional 

information about the source and the algorithm 

sensitivity to the data skew.  

 
Listing 2: ORSJ. 

The Hybrid join [4] combines the Map-side and 

Reduce-side joins. The abbreviation is 

HYB.

 
Listing 3: HYB. 

 In Map phase, we process only one set and the 

second set is partitioned in advance. The pre-partitioned 

set is pulled out of blocks from a distributed system in 

the Reduce phase, where it is joined with another data 

set that came from the Map phase. The similarity with 

the Map-side join is the restriction that one of the sets 

has to be split in advance with the same partitioner, 

which will split the second set. Unlike Map-side join, it 

is necessary to split in advance only one set. The 

similarity with the Reduce-side join is that algorithm 

requires two phases, one of them for pre-processing of 

data and one for direct join. In contrast with the 

Reduce-side join we do not need additional information 

about the source of data, as they come to the Reducer at 

a time. 

 

3.2 Map-Side join 

Map-side join is an algorithm without Reduce phase. 

This kind of join can be divided into two groups. First 

of them is partition join, when data previously 

partitioned into the same number of parts with the same 

partitioner. The relevant parts will be joined during the 

Map phase. This map-side join is sensitive to the data 

skew. The second is in memory join, when the smaller 

dataset send whole to all mappers and bigger dataset is 

partitioned over the mappers. The problem with this 

type of join occurs when the smaller of the sets can not 

fit in memory.  

There are three methods to avoid this problem: 

 JDBM-based map join,  

 Multi-phase map join,  

 Reversed map join. 

Map-side partition join algorithm assumes that the two 

sets of data pre-partitioned into the same number of 

splits by the same partitioner. Also known as default 

map join. The abbreviation is MSPJ. At the Map phase 

one of the sets is read and loaded into the hash table, 

then two sets are joined by the hash table. This 

algorithm buffers all records with the same keys in 

memory, as is the case with skew data may fail due to 

lack of enough memory. 

 
Listing 4: MSPJ. 

Map-side partition merge join is an improvement of the 

previous version of the join. The abbreviation is 

MSPMJ. If data sets in addition to their partition are 

sorted by the same ordering, we apply merge join. The 

advantage of this approach is that the reading of the 

second set is on-demand, but not completely, thus 

memory overflow can be avoided. As in the previous 

cases, for optimization can be used the semi-join 

filtering and range partitioner. 

Job 1: partition the smaller file S 

    Map (K:null, V from S) 

         emit (Key,V); 

 

     Reduce (K’:join key, LV: list of V’ with key K’) 

          for t in LV do 

                emit (null, t);    

 

Job 2: join two datasets 

     Map (K:null, V from B) 

          emit (Key,V); 

 

     init()  //for Reduce phase 

          read needed partition of output file from Job 1; 

          add it to hashMap(Key, list(V)) H; 

     Reduce (K’:join key, LV: list of V’ with key K’) 

          if(K’ in H) then 

               for r in LV do  

                     for l in H.get(K’) do 

                           emit (null, tuple(r,l));             

 

Map (K:null, V from R or L) 

      Tag = bit from name of R or L; 

      emit (pair(Key,Tag), pair(V,Tag)); 

 

Partitioner(K:key, V:value, P:the number of reducers) 

       return hash_f(K.Key) mod P;  

 

Reduce (K’: join key, LV: list of V’ with key K’) 

       create buffers Br for R; 

       for t in LV with t.Tag corresponds to R do 

              add t.v to  Br; 

       for l in LV with l.Tag corresponds to L do 

              for r in Br do 

                     emit (null, tuple(r.V,l.V)); 

 

Job 1: partition dataset S as in HYB 

Job 2: partition dataset B as in HYB 

Job 3: join two datasets 

   init()   //for Map phase 

       read needed partition of output file from Job 1; 

       add it to hashMap(Key, list(V)) H; 

    Map(K:null, V from B) 

        if (K in H) then 

              for r in LV do  

                   for l in H.get(K) do 

                 emit(null, tuple(r,l)); 
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Listing 5: MSPMJ. 
In-Memory Join does not require to distribute original 

data in advance unlike the versions of map joins 

discussed above. The same algorithms are called Map-

side replication join in [7], Broadcast Join in [6], 

Memory-backed joins [4], Fragment-Replicate join in 

[14]. The abbreviation is IMMJ. Nevertheless, this 

algorithm has a strong restriction on the size of one of 

the sets: it must fit completely in memory. The 

advantage of this approach is its resistance to the data 

skew because it sequentially reads the same number of 

tuples at each node. There are two options for 

transferring the smaller of the sets: 

 using a distributed cache, 

 reading from a distributed file system. 

 
Listing 5: IMMJ. 
The next three algorithms optimize the In-Memory Join 

for a case, when two sets are large and no of them fits 

into the memory. 

JDBM-based map join is presented in [21]. In this case, 

JDBM library automatically swaps hash table from 

memory to disk. 

 
Listing 6: JDBM. 
Multi-phase map join [21] is algorithm where the 

smaller of the sets is partitioned into parts that fit into 

memory, and for each part runs In-Memory join. The 

problem with this approach is that it has a poor 

performance. If the size of the set, which to be put in 

the memory is increased twice, the execution time of 

this join is also doubled. It is important to note that the 

set, which will not be loaded into memory, will be read 

many times from the disk.  

 
Listing 7: Multi-phase map join. 

Idea of Reversed map join [21] approach is that the 

bigger of the sets, which is partitions during the Map 

phase, loading in the hash table. Also known as 

Broadcast Join in [6]. The abbreviation is REV. The 

second dataset is read from a file line by line and joined 

using a hash table. 

 
Listing 7: REV. 

 

3.3 Semi-Join 

 

Sometimes a large portion of the data set does not take 

part in the join. Deleting of tuples that will not be used 

in join significantly reduces the amount of data 

transferred over the network and the size of the dataset 

for the join. This preprocessing can be carried out using 

semi-joins by selection or by a bitwise filter. However, 

these filtering techniques introduce some cost (an 

additional MR job), so the semi-join can improve the 

performance of the system only if the join key has low 

selectivity. There are three ways to implement the semi-

join operation:  

 a semi-join using bloom-filter,  

 semi-join using selection, 

 an adaptive semi-join. 

Bloom-filter is a bit array that defines a membership of 

element in the set. False positive answers are possible, 

but there are no false-negative responses in the solution 

of the containment problem. The accuracy of the 

containment problem solution depends on the size of 

the bitmap and on the number of elements in the set. 

These parameters are set by the user. It is known that 

for a bitmap of fixed size m and for the data set of n 

tuples, the optimal number of hash functions is 

k=0.6931*m/n. In the context of MapReduce, the semi-

join is performed in two jobs. The first job consists of 

the Map phase, in which keys from one set are selected 

and added to the Bloom-filter. The Reduce phase 

combines several Bloom-filters from first phase into 

one. The second job consists only of the Map phase, 

which filters the second data set with a Bloom-filter 

constructed in previous job. The accuracy of this 

approach can be improved by increasing the size of the 

bitmap. However in this case, a larger bitmap consumes 

more amounts of memory. The advantage of this 

method is its the compactness. The performance of the 

semi-join using Bloom-filter highly depends on the 

balance between the Bloom-filter size, which increases 

init()   //for Map phase 

    read S from HDFS; 

    add it to hashMap(Key, list(V)) H; 

map (K:null, V from S) 

      add to hashMap(Key, V) H; 

close()  //for Map phase 

       find B in HDFS 

       while (not end B) do 

              read line T; 

              K = join key from tuple T; 

              if (K in H) then 

                       for l in H.get(K) do 

                            emit(null, tuple(T,l));      

For part P from S that fit into memory do IMMJ(P,B). 

 

The same as IMMJ, but H is implemented by HTree 

instead of hashMap . 

init()  // for Map phase 

    read S from HDFS; 

    add it to hashMap(Key, list(V)) H; 

map (K:null, V from B) 

       if (K in H) then 

          for l in H.get(K) do 

                 emit (null, tuple(v,l));             

 

Job 1: partition S dataset as in HYB 

Job 2: partition B dataset as in HYB 

Job 3: join two datasets 

    init()  //for Map phase 

        find needed partition SP of output file from Job 1; 

        read first lines with the same key K2 from SP and add    

                 to buffer B; 

    Map(K:null, V from B) 

          while (K > K2) do 

                    read T from SP with key K2; 

                    while (K == K2) do 

                         add T to B; 

                         read T from SP with key K2;     

           if (K == K2) then 

                    for r in B do  

                        emit(null, tuple(r,V)); 
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the time needed for its reconstruction of the filter in the 

second job, and the number of false positive responses 

in the containment solution. The large size of the data 

set can seriously degrade the performance of the join. 

 
Listing 7: Semi-join using Bloom-filter. 

Semi-join with selection extracts unique keys and 

constructs a hash table. The second set is filtered by the 

hash table constructed in the previous step. In the 

context of MapReduce, the semi-join is performed in 

two jobs. Unique keys are selected during the Map 

phase of the first job and then they are combined into 

one file during the Map phase. The second job consists 

of only the Map phase, which filters out the second set. 

The semi-join using selection has some limitations. 

Hash table in memory, based on records of unique keys, 

can be very large, and depends on the key size and the 

number of different keys. 

 
Listing 8: Semi-join with selection. 

The Adaptive semijoin is performed in one job, but 

filters the original data on the flight during the join. 

Similar to the Reduce-side join at the Map phase the 

keys from two data sets are read and values are set 

equal to tags which identify the source of the keys. At 

the Reduce phase keys with different tags are selected. 

The disadvantage of this approach is that additional 

information about the source of data is transmitted over 

the network. 

 
Listing 8: Adaptive semi-join. 

 

3.4 Range Partitioners 

 

All algorithms, except the In-Memory join and their 

optimizations are sensitive to the data skew. This 

section describes two techniques of the default hash 

partitioner replacement. 

A Simple Range-based Partitioner [4] (this kind similar 

to the Skew join in [14]) applies a range vector of 

dimension n constructed from the join keys before 

starting a MR job. By this vector join keys will be 

splitted into n parts, where n is the number of Reduce 

jobs. Ideally partitioner vector is constructed from the 

whole original set of keys, in practice a certain number 

of keys is chosen randomly from the data set. It is 

known that the optimal number of keys for the vector 

construction is equal to the square root of the total 

number of tuples. With a heavy data skew into a single 

key value, some elements of the vector may be 

identical. If the key belongs to multiple nodes, a node is 

selected randomly in the case of data on which to build 

a hash table, otherwise the key is sent to all nodes (to 

save memory as a hash table is contained in the 

memory). 

Virtual Processor Partitioner [4] is an improvement of 

the previous algorithm based on increasing the number 

of partition. The number of parts is specified multiple of 

the tasks number.  The approach tends to load the nodes 

with the same keys uniformly (compared with the 

previous version). The same keys are scattered on more 

nodes than in the previous case. 

Job 1: find keys which are present in two datasets 

     Map (K:null, V from R or L) 

         Tag = bit from name of R or L; 

         emit (Key,Tag); 

 

     Reduce (K’: join key, LV: list of V with key K’) 

          Val = first value from LV; 

           for t in LV do 

                 if (not Val==Val2) then 

                     emit (null, K’); 

 

Job 2: before joining it is necessary to filter the smaller 

dataset by keys from the Job 1 that will be loaded into 

hash map. Then the bigger dataset is joined with filtered 

one. 

 

Job 1: find unique keys 

    Map (K:null, V from L) 

          Create HashMap H; 

          if (not Key in H) then 

                add Key to H;  

       emit (Key, null); 

 

    Reduce (K’: key, LV) //only one Reducer 

         emit (null,key);     

    

Job 2: filter dataset  

    init()  //for Map phase 

           add to  HashMap H unique keys from job 1;      

    Map (K:null, V from R) 

           if (Key in H) then 

               emit (null,V);       

 

Job 3: do join with L dataset and filtered dataset from 

Job 2. 

 

 

Job 1: construct Bloom filter 

     Map (K:null, V from L) 

            Add Key to BloomFilter Bl 

     close()  //for Map phase 

            emit(null, Bl); 

 

    Reduce (K’: key, LV) //only 1 Reducer 

       for l in LV do 

            union filters by operation Or 

       close()  // for Reduce phase 

            write resulting filter into file;  

      

Job 2: filter dataset  

     init()   //for Map phase 

            read filter from file in Bl 

     Map (K:null, V from R) 

            if (Key in Bl)  then 

                emit (null, V); 

 

Job 3: do join with L dataset and filtered dataset from 

Job 2. 
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Listing 8: The range partitioners. 

 

3.5 Distributed cache 

 

The advantage of using distributed cache is that data set 

are copied only once at the node. It is especially 

effective if several tasks at one node need the same file. 

In contrast the access to the global file system needs 

more communication between the nodes. Better 

performance of the joins without the cache can be 

achieved by increasing number of the files replication, 

so there's a good chance to access the file version 

locally. 
 

4 Cost model 

 
Due to significant differences between parallel DBMS 

and MapReduce, the MapReduce paradigm requires 

another optimization techniques based on indexing and 

compression, programming models, data distribution 

and query execution strategy. Therefore, we need a 

different strategy of designing model cost. There are 

two types of designing cost models: the task execution 

simulation [29] and analytical cost calculation [15, 24]. 

To measure the query parallelism effectiveness, it is 

need to build a cost model that can describe the 

behavior of each algorithm for parallel query. 

Analytical model is cost formulas that are used to 

calculate the query execution time, taking into account 

the specific of parallel algorithm.  Below, analytical 

cost model for join algorithms and their optimizations 

will be constructed. 

 

4.1Configuration settings 

 

Execution of MR program depends on input data 

statistic such as selectivity, skew, compression, on 

cluster resource such as number of nodes, on 

configuration parameters, such as I/O cost, and on 

properties of specific algorithm. Below, the parameters 

used in the analysis are presented in table. 

 

Variable Description 

s(x) Size of x in mb 

p(x) Number of pairs for split x 

wid Pair width 

ct The average computation time needed per 

pair 

pC The cost for partition 

sC The cost for serialization 

sortC The cost for sorting on keys 

cC The cost for executing combine function 

mC The cost for merge 

selP Selectivity of pairs 

selC Selectivity of combining 

|red| Number of reducers 

|map| Number of mappers 

rh The cost for reading from HDFS 

wh The cost for writing  to HDFS 

rwl The cost for local I/O operations 

tC The cost of network transfer 

sortMB io.sort.mb parameter in Hadoop 

configuration 

sortRP io.sort.record.percent 

sortSP io.sort.spill.percent 

F io.sort.factor 

shuBP mapred.job.shuffle.input.buffer.percent 

shuMP mapred.job.shuffle.merge.percent 

memMT mapred.inmem.merge.threshold 

memT mapred.child.java.opts 

redBP mapred.job.reduce.input.buffer.percent 

 

4.2 Cost of arbitrary MR program 

 

As mentioned above, the MR job consists of the 

execution stages, thus it is possible to estimate each 

phase separately. Job may contain the following stages: 

Setup, Read (read map input), Map (map function), 

Buffer (serializing to buffer, partitioning, sorting, 

combining, compressing, write output data to local 

disk), Merge (merging spill files), Shuffle (transferring 

map output to reducers), MergeR(merging received 

files), Reduce (reduce function), Write (writing result to 

the HDFS), Cleanup.  Due to the fact that the job of MR 

program carried out in parallel or in waves, it is possible 

to calculate the approximate total cost of the job 

//before the MR job starts 

// optimal max = sqrt(|R|+|L|) 

getSamples (Red:the number of reducers, max: the max  

                      number of samples) 

       C = max/Splits.length;  

       Create buffer B;        

      for s in Splits of R and L do 

              get C keys from s; 

              add it to B; 

       sort B;  

      //in case simple range partitioner P == 1 

      //in case virtual  range partitioner P > 1 

      for j<(Red*P) do 

               T = B.length/(Red*P)*(j+1); 

              write into file B[T]; 

 

Map(K:null, V from L or R) 

       Tag = bit from name of R or L; 

       read file with samples and add samples to Buffer B; 

       //in case virtual partition it is needed to 

       // each index mod |Reducers| 

       Ind = {i:  B[i-1] < Key <= B[i]}    

       // Ind may be array of indexes in skew case 

       if (Ind.length >1) then 

               if (V in L) then 

                      node = random(Ind); 

                     emit (pair(Key, node), pair(V, Tag)); 

               else 

                     for i in Ind do 

                           emit (pair(Key, i), pair(V, Tag)); 

        else  

              emit (pair(Key, Ind), pair(V, Tag)); 

 

Partitioner (K:key, V:value, P:the number of reducers) 

       return K.Ind; 

 

Reducer (K’: join key, LV: list of V’ with key K’) 

        The same as GRSJ 
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through the cost of one task (one mapper and one 

reducer). The jobCost take into account the parallel 

threads of execution and compute the total cost of MR 

job, where cm and cr are costs of one task mapper or 

reducer respectively, MaxMN and MaxRN are 

maximum map tasks or reduce task per node. 

 

tr

rm

job c
MaxRNnodes

cred

MaxMNnodes

cmap
Cost 

*||

*||

*||

*||   

This formula is bad for the skew data, when one task is 

time consuming.  
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CMap and creduce are the cost of user-define functions, so 

for each join algorithm it is calculated by the own 

formula.  Another cost values from (cread, cBuffer, cWrite, 

cmerge, cmergeR, cshuffle, ct) are common for join algorithms. 

Consider these costs in more detail as [15, 24]. Stages 

of reading input data from HDFS and writing into 

HDFS are calculated by: 

hWritehread woutscrsplitsс *)(,*)(   , 

where split is input split for mapper task, out is the 

output data of job. The buffering phase is more 

complicated; during this stage three processes take 

place: partitioning, sorting and spilling to disk.  
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Where outm is output from map functions, buf is buffer 

for this stage. The buffer is divided into two parts, there 

are serialization buffer (SB), that contains key-value 

pairs and an accounting buffer (AB) that contains the 

metadata. So, the number of pairs in buffer is: 

)}(),(min{)( ABpSBpbufp    
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The number of spilled files (N) from this stage is: 
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Then all spilled files must be merged with such 

features:  

 the number of spill files are merged at once is F, 

 assume that the following 
2FN  , 

 at first pass it is merged so spill files that remain 

files is multiplies F   

 at final merge if needed the combiner will be 

used.   

The number of spill files equal to sum of spill files at 

first pass (S1P), at intermediate pass (SIP) and at final 

pass (SFP): 
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After that stage map output transferred to the reducers 

(this cost includes the cost for all reducers). 

tC
nodes

nodes
mapoutmsctr *
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The data from mappers are transferred by segments to 

reducers. Without considering the data skew, it is 

assumed that the sizes of segments are the same.  

||

)(
)(

red

outms
segs   

When segment arrive to the reducer it is placed in 

shuffle buffer or if size of segment is greater than 25% 

of buffer size then it is spilled into disk without in-

memory buffer. The buffer size is determined by the 

configuration parameters as: 

.*)( memTshuBPbufs   If buffer reaches size 

threshold (s(thr)) or the number of segments is greater 

than memMT, then  segments are merged, sort and spill 

into disk. shuMPbufsthrs *)()(  . The number of 

segments (|segF|) in shuffle file and the number of such 

files (|shF|) are: 
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If the number of shuffle files is greater than (2*F-1) 

then all files are merged into one. So, all segments may 

be divided on three states: in-memory buffer (segMB), 

shuffle unmerged files (segUF) and shuffle merged files 

(segMF). 
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The cost of shuffle stage is: 
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Thereafter, segMB,segUF, segMF files must be merged.  

Some segments from memory (segE) are spilled to disk 

by redBP constraint. 
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If the number of files from disk is less than F then segE 

files are merged separately.  
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After the merging, the number of files from disk is: 
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Then the process of merging is similar to cmerge, where 

N=|segD|. 
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At final it is merged remained files. 
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The final cost of this phase is: 
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Since the join algorithms are known in advance we can 

more accurately than the approach in [28] is to estimate 

the cost of user-defined functions Map and Reduce. 

 

4.3 Cost model for Reduce-Side join 

 

In case of General reducer-side join, MR program 

consists of one job and cost for combining is equal to 0.  

In map function source tag is assign to each pair 

(consider that input map pair is equal to output map 

pair): 

30,00000095,*)(  widwidcoutmpс t

GRSJ

Map

  

In reduce function pairs with different tags are joined 

(nested-loop): 
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As opposite to General reducer-side join, the cost of 

Optimized reducer-side join includes the cost of 

combine function and the cost of reduce function is less 

then 
GRSJ

reduceс : 
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inprpinprp

с **
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Map
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In contrast to the previous join, MR program of the 

Hybrid Hadoop join consist of pre-processing job and 

join job. The pre-processing job is partition one dataset 

into |red| parts, and besides these partitions may be got 

from other MR job or from default MR job. The costs 

of default map and reduce functions are: 

  t

prep

reduce

prep

Map cinpcс *)1(  

There are two ways to deliver full one dataset to the 

mapper: read file from HDFS or by using distributed 

cache. And if distributed cache is used then the 

necessary files are copied to the slave nodes before the 

job is started. So, the ctr cost is added. The costs of with 

and without distributed cache deliver are: 

cachec  tl cinpwrins *)1(*)1(   

thhdfs cinprinsc *)1(*)1(    

The map and reduce functions costs of join job are: 












thdfs

tcachehyb

reduce

prep

Map

hyb

Map

cselРinpinpc

cselРinpinpc
c

inсс

**)2(*)1(

**)2(*)1(

),2(

 

4.4 Cost model for Map-Side join 

 

The join job doesn’t have reducer phase. 

Map-side partition join consists of pre-processing jobs 

for two input datasets (or partitions are got from another 

job) and join job.  

The map function of join job is: 
hyb

reduce

MSPJ

reduce сc   

In-Memory Join the small dataset (in1) is broadcast to 

all reducers.  
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In reversed join the datasets are reversed, in2 (the 

bigger one) is broadcast, in1 is split of smaller dataset 

and it is loaded in hash table. 
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Multi-phase map join cost equal to sum of immj job 

costs. The number of summands is 1
)1(


memT

ins
. 

4.5 The semi-join cost 

 

The semi-join with selection consists of two jobs: 

finding unique keys and filter the dataset by unique 

keys. The cost of map function of finding unique keys is 

sum of filling hash table and producing the output costs. 

The input for this job is one dataset.  

t

find

Map cinpс *2*)1( . The reduce function of that 

job is run on the one reducer and the same as default 

reduce function. 

The filtering job consists of one map phase, where the 

file with unique key from previous job is loaded into 

hash table and then the split of another dataset is probe. 
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Map cinpc

cinpc
с

*)(
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The Adaptive semi-join is similar to reduce-side join. 

The two datasets are read and tagged by label in map 

function. And at reducer the pairs with different tags are 

output. The cost is equal to default job. But at the actual 

join it is needed to add some cost of loading file with 

unique keys, filling hash table and filtering useless pairs 

as
fil

Mapс . 

 In case of semi-join with bloom-filter the program 

consists of two jobs: creating bloom filter and filtering 

the dataset. In the map function, bloom filter for split 

constructed and the output all filter as one pair.   

lobloomscinpс t

bloom

Map *)(*)1(   

Where lo is the cost for processing bloom filter. The 

reducer is one and it is combine all bloom-filter into 

one. 

lobloomsmapсbloomduce *)(*||Re   

At another job the constructed bloom-filter is loaded 

and the second dataset is probed. 

th

filb

Map cinprbloomsс *)2(*)(   

5 Experiments 

5.1 Dataset 

Data are the set of tuples, which attributes are separated 

by a comma. Tuple is split into a pair of a key and a 

value, where value is the remaining attributes. 

Generation of synthetic data was done as in [4]. Join 

keys are distributed randomly. 

 

5.2 Cluster configuration 

Cluster consists of three virtual machines, where one of 

them is master and slave at the same time, the 

remaining two are the slaves. Host configuration 

consists of 1 processor, 512 mb of memory for the 

master, for others nodes have by 512 mb, 5 gb is the 

disk size. Hadoop  20.203.0 runs on  Ubuntu 10.10. 

 

5.3 The General Case 

 

The base idea of this experiment is to compare 

executions time of different phases of various 

algorithms. Some parameters are fixed: the number of  

Map and Reduce tasks is 3, the input size is 

10000*100000 and 1000000*1000000 tuples.  

 
Figure 1: Executions time of different phases of various 

algorithms. Size 10000*100000.  

 

 
Figure 2: Executions time of different phases of various 

algorithms. Size 1000000*1000000. 

 

For a small amount of data, Map phase, in which all 

tuples are tagged, and Shuffle phase, in which data are 

transferred from one phase to another, are more costly 

in Reduce-Side joins. It should be noted that GRSJ is 

better than ORSJ on small data, but it is the same on big 

data. It is because in first case time does not spend on 

combining tuples. Possible, on the larger data ORSJ 

outperform  GRSJ when the usefulness of grouping by 

key will be more significant.  Also for algorithms with 

pre-processing more time are spent on partitioning data. 

The algorithms in memory (IMMJ and REV) are similar 

in small data. Two algorithms are not shown in the 

graph because of their bad times: JDBM-based map join 

and Multi-phase map join. In large data IMMJ 
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algorithm could not be executed because of memory 

overflow. 
 
 

5.4 Semi-Join 

 

The main idea of this experiment is to compare different 

semi-join algorithms. These parameters are fixed: the 

number of Map and Reduce tasks is 3, the bitmap size 

of Bloom-filter is 2500000, the number of hash-

functions in Bloom-filter is 173, built-in Jenkins hash 

algorithm is used in Bloom-filter. Adaptive semi-join 

(ASGRSJ) does not finish because of memory 

overflow. The abbreviation of Bloom-filter semi-join 

for GRSJ is BGRSJ. The abbreviation of semi-join with 

selection for GRSJ is SGRSJ respectively. 

 
Figure 3: Comparison of different semi-join implementations. 

5.5 Distributed cache 

 

In [21] was showed that using of distributed cache is 

not always good strategy. They suggested that the 

problem can be a high speed network. This experiment 

was carried out for Reversed Map-Side join, because for 

which a distributed cache can be important. Replication 

was varied as 1, 2, 3 and size of data is fixed – 

1000000*1000000 tuples. When data is small, the 

difference is not always visible. In large data algorithms 

with distributed cache outperform approach of reading 

from a globally distributed system.  

  
Figure 4: Performance of Reversed Map-Side join with and 

without using distributed cache. 

 

5.6 Skew data 

 

It is known that many of the presented algorithms are 

sensitive to the data skew. In this experiment take part 

such algorithms as Reduce-side join with Simple 

Range-based Partitioner for GRSJ (GRSJRange) and 

Virtual Processor Partitionerfor GRSJ (GRSJVirtual), 

and also for comparing in memory join: IMMJ, REV 

because of resistant to the skew. Fixed parameters are 

used: size of two dataset is 2000000, one of the data set 

has skew 500000 of 5, and another has 10 or 1 of 5. In 

case with IMMJ was memory overflow. 

 

  
Figure 5: Processing the data skew. 

 

     Although these experiments do not completely cover 

the tuneable set of Hadoop parameters, they are shown 

the advantages and disadvantages of the proposed 

algorithms. The main problems of these algorithms are 

time spent on pre-processing, transferring data, the data 

skew, and memory overflow.  

      Each of the optimization techniques introduces 

additional cost to the implementation of the join, so the 

algorithm based on the tuneable settings and specific 

data should be carefully chosen. Also important are the 

parameters of the network bandwidth when distributed 

cache are used or not used and a hardware specification 

of nodes because of it is importance when speculative 

executions are on.  Speculative execution reduces 

negative effects of non-uniform performance of 

physical nodes.  

     Based on the collected statistics such as data size, 

how many keys will be taking part in the join, these 

statistics may be collected as well as the construction of 

a range partitioner, the query planner can choose an 

efficient variant of the join. For example, in [5] was 

proposed what-if analyses and cost-based optimization.  

 

6 Future work 

 
The algorithms discussed in this paper, only two sets 

are joined. It is interesting to extend from binary 

operation to multi argument joins. Among the proposed 

algorithms, there is no effective universal solution. 

Therefore, it is necessary to evaluate the proposed cost 

models for join algorithms. And for this problem it is 

need to use real cluster with more than three nodes in it 

and more powerful to process bigger data, due to the 

fact that the execution time on the virtual machine may 

be different from the real cluster in reading/writing, 

transferring data over the network and so on.  

       Also the idea of processing the data skew in 

MapReduce applications from [19] can be applied to the 

join algorithms. Another direction to future work is to 

extend algorithm to support a theta-join and outer join.  

An interesting area for future work is to develop, 

implement and evaluate algorithms or extended 

algebraic operations suitable for complex similarity 
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queries in an open distributed heterogeneous 

environment. The reasons to evaluate complex 

structured queries are: a need to combine search criteria 

for different types of information; a query refinement 

e.g. based on user profile or feedback; advanced users 

may need query structuring. The execution model and 

algebraic operation to be implemented are outlined in 

[31]. The main goal is to solve the problems presented 

in [8] as a problem. 

     In addition, one of the issues is efficient physical 

representation of data. Binary formats are known to 

outperform the text both in speed reading and 

partitioning key / value pairs, and the transmission of 

compressed data over the network. Along with the 

binary data format, column storage has already been 

proposed for paradigm MapReduce. It is interesting to 

find the best representation for specific data. 

 

7 Conclusion 

 
In this work we describe the state of the art in the area 

of massive parallel processing, presented our 

comparative study of these algorithms, cost models and 

our outline directions of future work.  
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