
www.manaraa.com

 Generalized Parallel Join Algorithms and Designing Cost

Models

Alice Pigul

SPbSU

m05pay@math.spbu.ru

Abstract

Applications for large-scale data analysis use such

techniques as parallel DBMS, MapReduce (MR)

paradigm, and columnar storage. In this paper we focus

in a MapReduce environment. The aim of this work is

to compare the different join algorithms and designing

cost models for further use in the query optimizer.

1 Introduction

Data-intensive applications include large-scale data

warehouse systems, cloud computing, data-intensive

analysis. These applications have their own specific

computational workload. For example, analytic systems

produce relatively rare updates but heavy select

operation with millions of records to be processed, often

with aggregations.

 There are the following architectures that are used

to analyze massive amounts of data: MapReduce

paradigm, parallel DBMSs, column-wise store, and

various combinations of these approaches.

 Applications of this type process multiple data sets.

This implies need to perform several join operation. It’s

known join operation is one of the most expensive

operations in terms both I / O and CPU costs.

 Unfortunately, join algorithms is not directly

supported in MapReduce. There are some approaches to

solve this problem by using a high-level language

PigLatin, HiveQL for SQL queries or implementing

algorithms from research papers. The aim of this work

is to generalize and compare existing equi-join

algorithms with some optimization techniques and build

cost model which could be used in a query optimizer for

a distributed DBMS with MapReduce.

 This paper is organized as follows the section 2

describe state of the art. Join algorithms and some

optimization techniques were introduced in 3 section.

The designing of cost models for join algorithms are

presented in 4 section. Performance evaluation will be

described in 5 section. Finally, future direction and

some discussion of experiments will be given.

2 Related work

2.1 Architectural Approaches

Column storage is one of the architectural approaches to

store data in columns, that the values of one field are

stored physically together in a compact storage area.

Column storage strategy improves performance by

reducing the amount of unnecessary data from disk by

excluding the columns that are not needed. Additional

gains may be obtained using data compression. Storage

method in columns outperforms row-based storage for

workloads typical for analytical applications, which are

characterized by heavy selection operation from

millions of records, often with aggregation and by

infrequent update operation. For this class of workloads

I/O is major factor limited the performance.

Comparison of column-wise and row-wise stores

approaches is presented in [1].

 Another architectural approach is a software

framework MapReduce. Paradigm MapReduce was

introduced in [11] to process massive amounts of

unstructured data.

 Originally, this approach was contrasted with a

parallel DBMS. Deep analysis of the advantages and

disadvantages of these two architectures was presented

in [25,10].

 Later, hybrid systems appeared in [9, 2]. There are

three ways to combine approaches MapReduce and

parallel DBMS.

 MapReduce inside a parallel DBMS. The main

intention is to move computation closer to

data. This architecture can be exemplified with

hybrid database Greenplum with MAD

approach [9].

 DBMS inside MapReduce. The basic idea is

to connect multiple single node database

systems using MapReduce as the task

coordinator and network communication layer.

An example is a hybrid database HadoopDB

[2].

 MapReduce aside of the parallel DBMS.

MapReduce is used to implement an ETL

produced data to be stored in parallel DBMS.

Proceedings of the Spring Young Researcher's

Colloquium On Database and Information Systems

SYRCoDIS, Moscow, Russia, 2012

www.manaraa.com

This approach is discussed in [28] Vertica,

which also supports the column-wise store.

 Another group of hybrid systems combines

MapReduce with column-wise store. MapReduce and

column-wise store are effective in data-intensive

applications. Hybrid systems based on this two

techniques may be found in [20,13].

2.2 Algorithms for Join Operation

Detailed comparison of relational join algorithms was

presented in [26]. In our paper, the consideration is

restricted to a comparison of joins in the context of

MapReduce paradigm.

 Papers which discuss equi-join algorithms can be

divided into two categories which describe join

algorithms and multi join execution plans.

The former category deals with design and analyses join

algorithm of two data sets. A comparative analysis of

two-way join techniques is presented in [6, 4, 21]. The

cost model for two-way join algorithms in terms of cost

I/O is presented in [7, 17].

 The basic idea of multi-way join is to find strategies

to combine the natural join of several relations.

Different join algorithms from relation algebra are

presented in [30]. The authors introduce the extension

of MapReduce to facilitate implement relation

operations. Several optimizations for multi-way join are

described in [3, 18]. Authors introduced a one-to-many

shuffling strategy. Multi-way join optimization for

column-wise store is considered in [20, 32].

 Theta-Joins and set-similarity joins using

MapReduce are addressed in [23] and [27] respectively.

2.3 Optimization techniques and cost models

In contrast to the sql queries in parallel database, the

MapReduce program contains user-defined map and

reduce functions. Map and reduce functions can be

considered as a black-box, when nothing is known

about these functions, or they can be written on sql-like

languages, such as HiveQL, PigLatin, MRQL, or sql

operations can be extracted from functions on semantic

basis. Automatic finding good configuration settings for

arbitrary program offered in [16]. Theoretical designing

cost models for arbitrary MR program for each phase

separately presented in [15]. If the MR program is

similar to the semantics of SQL, it allows us to

construct a more accurate cost model or adapt some of

the optimization techniques from relational databases.

HadoopToSQL [22] allows to take advantage of two

different data storages such as SQL database and the

text format in MapReduce storage and to use index at

right time by transforming the MR program to SQL.

Manimal system [17] uses static analysis for detection

and exploiting selection, projection and data

compression in MR programs and if needed to employ

B+ tree index.

New SQL-like query language and algebra is presented

in [12]. But they are needed cost model based on

statistic. Detailed construction of the model to estimate

the I/O cost for each phase separately is given in [24].

Simple theoretical considerations for selecting a

particular join algorithm are presented in [21]. Another

approach [7] for selecting join algorithm is to measure

the correlation between the input size and the join

algorithm execution time with fixed cluster

configuration settings.

3 Join algorithms and optimization

techniques

 In this section we consider various techniques of two-

way joins in MapReduce framework. Join algorithms

can be divided into two groups: Reduce-side join and

Map-side join. The pseudo code presented in Listings,

where R – right dataset, L – left dataset, V – line from

file, Key – join key, that was parsed from a tuple, in this

context tuple is V.

3.1 Reduce-Side join

Reduce-side join is an algorithm which performs data

pre-processing in Map phase, and direct join is done

during the Reduce phase. Join of this type is the most

general without any restriction on the data. Reduce-side

join is the most time-consuming, because it contains an

additional phase and transmits data over the network

from one phase to another. In addition, the algorithm

has to pass information about source of data through the

network. The main objective of the improvement is to

reduce the data transmission over the network from the

Map task to the Reduce task by filtering the original

data through semi-joins. Another disadvantage of this

class of algorithms is the sensitivity to the data skew,

which can be addressed by replacing the default hash

partitioner with a range partitioner.

There are three algorithms in this group:

 General reducer-side join,

 Optimized reducer-side join,

 the Hybrid Hadoop join.

 General reducer-side join is the simplest one. The

same algorithms are called Standard Repartition Join in

[6]. The abbreviation is GRSJ.

Listing 1: GRSJ.

This algorithm has both Map and Reduce phases. In the

Map phase, data are read from two sources and tags are

attached to the value to identify the source of a

key/value pair. As the key is not effecting by this

Map (K: null, V from R or L)

 Tag = bit from name of R or L;

 emit (Key, pair(V,Tag));

Reduce (K’: join key, LV: list of V with key K’)

 create buffers Br and Bl for R and L;

 for t in LV do

 add t.v to Br or Bl by t.Tag;

 for r in Br do

 for l in Bl do

 emit (null, tuple(r.V,l.V));

www.manaraa.com

tagging, so we can use the standard hash partitioner. In

Reduce phase, data with the same key and different tags

are joined with nested-loop algorithm. The problems of

this approach are that the reducer should have sufficient

memory for all records with a same key; and the

algorithm sensitivity to the data skew.

 Optimized reducer-side join enhances previous

algorithm by overriding sorting and grouping by the

key, as well as tagging data source. Also known as

Improved Repartition Join in [6], Default join in [14].

The abbreviation is ORSJ. In the algorithm all the

values of the first tag are followed by the values of the

second one. In contrast with the General reducer-side

join, the tag is attached to both a key and a value. Due

to the fact that the tag is attached to a key, the

partitioner must be overridden in order to split the nodes

by the key only. This case requires buffering for only

one of input sets. Optimized reducer-side join inherits

major disadvantages of General reducer-side join

namely the transferring through the network additional

information about the source and the algorithm

sensitivity to the data skew.

Listing 2: ORSJ.

The Hybrid join [4] combines the Map-side and

Reduce-side joins. The abbreviation is

HYB.

Listing 3: HYB.

 In Map phase, we process only one set and the

second set is partitioned in advance. The pre-partitioned

set is pulled out of blocks from a distributed system in

the Reduce phase, where it is joined with another data

set that came from the Map phase. The similarity with

the Map-side join is the restriction that one of the sets

has to be split in advance with the same partitioner,

which will split the second set. Unlike Map-side join, it

is necessary to split in advance only one set. The

similarity with the Reduce-side join is that algorithm

requires two phases, one of them for pre-processing of

data and one for direct join. In contrast with the

Reduce-side join we do not need additional information

about the source of data, as they come to the Reducer at

a time.

3.2 Map-Side join

Map-side join is an algorithm without Reduce phase.

This kind of join can be divided into two groups. First

of them is partition join, when data previously

partitioned into the same number of parts with the same

partitioner. The relevant parts will be joined during the

Map phase. This map-side join is sensitive to the data

skew. The second is in memory join, when the smaller

dataset send whole to all mappers and bigger dataset is

partitioned over the mappers. The problem with this

type of join occurs when the smaller of the sets can not

fit in memory.

There are three methods to avoid this problem:

 JDBM-based map join,

 Multi-phase map join,

 Reversed map join.

Map-side partition join algorithm assumes that the two

sets of data pre-partitioned into the same number of

splits by the same partitioner. Also known as default

map join. The abbreviation is MSPJ. At the Map phase

one of the sets is read and loaded into the hash table,

then two sets are joined by the hash table. This

algorithm buffers all records with the same keys in

memory, as is the case with skew data may fail due to

lack of enough memory.

Listing 4: MSPJ.

Map-side partition merge join is an improvement of the

previous version of the join. The abbreviation is

MSPMJ. If data sets in addition to their partition are

sorted by the same ordering, we apply merge join. The

advantage of this approach is that the reading of the

second set is on-demand, but not completely, thus

memory overflow can be avoided. As in the previous

cases, for optimization can be used the semi-join

filtering and range partitioner.

Job 1: partition the smaller file S

 Map (K:null, V from S)

 emit (Key,V);

 Reduce (K’:join key, LV: list of V’ with key K’)

 for t in LV do

 emit (null, t);

Job 2: join two datasets

 Map (K:null, V from B)

 emit (Key,V);

 init() //for Reduce phase

 read needed partition of output file from Job 1;

 add it to hashMap(Key, list(V)) H;

 Reduce (K’:join key, LV: list of V’ with key K’)

 if(K’ in H) then

 for r in LV do

 for l in H.get(K’) do

 emit (null, tuple(r,l));

Map (K:null, V from R or L)

 Tag = bit from name of R or L;

 emit (pair(Key,Tag), pair(V,Tag));

Partitioner(K:key, V:value, P:the number of reducers)

 return hash_f(K.Key) mod P;

Reduce (K’: join key, LV: list of V’ with key K’)

 create buffers Br for R;

 for t in LV with t.Tag corresponds to R do

 add t.v to Br;

 for l in LV with l.Tag corresponds to L do

 for r in Br do

 emit (null, tuple(r.V,l.V));

Job 1: partition dataset S as in HYB

Job 2: partition dataset B as in HYB

Job 3: join two datasets

 init() //for Map phase

 read needed partition of output file from Job 1;

 add it to hashMap(Key, list(V)) H;

 Map(K:null, V from B)

 if (K in H) then

 for r in LV do

 for l in H.get(K) do

 emit(null, tuple(r,l));

www.manaraa.com

Listing 5: MSPMJ.
In-Memory Join does not require to distribute original

data in advance unlike the versions of map joins

discussed above. The same algorithms are called Map-

side replication join in [7], Broadcast Join in [6],

Memory-backed joins [4], Fragment-Replicate join in

[14]. The abbreviation is IMMJ. Nevertheless, this

algorithm has a strong restriction on the size of one of

the sets: it must fit completely in memory. The

advantage of this approach is its resistance to the data

skew because it sequentially reads the same number of

tuples at each node. There are two options for

transferring the smaller of the sets:

 using a distributed cache,

 reading from a distributed file system.

Listing 5: IMMJ.
The next three algorithms optimize the In-Memory Join

for a case, when two sets are large and no of them fits

into the memory.

JDBM-based map join is presented in [21]. In this case,

JDBM library automatically swaps hash table from

memory to disk.

Listing 6: JDBM.
Multi-phase map join [21] is algorithm where the

smaller of the sets is partitioned into parts that fit into

memory, and for each part runs In-Memory join. The

problem with this approach is that it has a poor

performance. If the size of the set, which to be put in

the memory is increased twice, the execution time of

this join is also doubled. It is important to note that the

set, which will not be loaded into memory, will be read

many times from the disk.

Listing 7: Multi-phase map join.

Idea of Reversed map join [21] approach is that the

bigger of the sets, which is partitions during the Map

phase, loading in the hash table. Also known as

Broadcast Join in [6]. The abbreviation is REV. The

second dataset is read from a file line by line and joined

using a hash table.

Listing 7: REV.

3.3 Semi-Join

Sometimes a large portion of the data set does not take

part in the join. Deleting of tuples that will not be used

in join significantly reduces the amount of data

transferred over the network and the size of the dataset

for the join. This preprocessing can be carried out using

semi-joins by selection or by a bitwise filter. However,

these filtering techniques introduce some cost (an

additional MR job), so the semi-join can improve the

performance of the system only if the join key has low

selectivity. There are three ways to implement the semi-

join operation:

 a semi-join using bloom-filter,

 semi-join using selection,

 an adaptive semi-join.

Bloom-filter is a bit array that defines a membership of

element in the set. False positive answers are possible,

but there are no false-negative responses in the solution

of the containment problem. The accuracy of the

containment problem solution depends on the size of

the bitmap and on the number of elements in the set.

These parameters are set by the user. It is known that

for a bitmap of fixed size m and for the data set of n

tuples, the optimal number of hash functions is

k=0.6931*m/n. In the context of MapReduce, the semi-

join is performed in two jobs. The first job consists of

the Map phase, in which keys from one set are selected

and added to the Bloom-filter. The Reduce phase

combines several Bloom-filters from first phase into

one. The second job consists only of the Map phase,

which filters the second data set with a Bloom-filter

constructed in previous job. The accuracy of this

approach can be improved by increasing the size of the

bitmap. However in this case, a larger bitmap consumes

more amounts of memory. The advantage of this

method is its the compactness. The performance of the

semi-join using Bloom-filter highly depends on the

balance between the Bloom-filter size, which increases

init() //for Map phase

 read S from HDFS;

 add it to hashMap(Key, list(V)) H;

map (K:null, V from S)

 add to hashMap(Key, V) H;

close() //for Map phase

 find B in HDFS

 while (not end B) do

 read line T;

 K = join key from tuple T;

 if (K in H) then

 for l in H.get(K) do

 emit(null, tuple(T,l));

For part P from S that fit into memory do IMMJ(P,B).

The same as IMMJ, but H is implemented by HTree

instead of hashMap .

init() // for Map phase

 read S from HDFS;

 add it to hashMap(Key, list(V)) H;

map (K:null, V from B)

 if (K in H) then

 for l in H.get(K) do

 emit (null, tuple(v,l));

Job 1: partition S dataset as in HYB

Job 2: partition B dataset as in HYB

Job 3: join two datasets

 init() //for Map phase

 find needed partition SP of output file from Job 1;

 read first lines with the same key K2 from SP and add

 to buffer B;

 Map(K:null, V from B)

 while (K > K2) do

 read T from SP with key K2;

 while (K == K2) do

 add T to B;

 read T from SP with key K2;

 if (K == K2) then

 for r in B do

 emit(null, tuple(r,V));

www.manaraa.com

the time needed for its reconstruction of the filter in the

second job, and the number of false positive responses

in the containment solution. The large size of the data

set can seriously degrade the performance of the join.

Listing 7: Semi-join using Bloom-filter.

Semi-join with selection extracts unique keys and

constructs a hash table. The second set is filtered by the

hash table constructed in the previous step. In the

context of MapReduce, the semi-join is performed in

two jobs. Unique keys are selected during the Map

phase of the first job and then they are combined into

one file during the Map phase. The second job consists

of only the Map phase, which filters out the second set.

The semi-join using selection has some limitations.

Hash table in memory, based on records of unique keys,

can be very large, and depends on the key size and the

number of different keys.

Listing 8: Semi-join with selection.

The Adaptive semijoin is performed in one job, but

filters the original data on the flight during the join.

Similar to the Reduce-side join at the Map phase the

keys from two data sets are read and values are set

equal to tags which identify the source of the keys. At

the Reduce phase keys with different tags are selected.

The disadvantage of this approach is that additional

information about the source of data is transmitted over

the network.

Listing 8: Adaptive semi-join.

3.4 Range Partitioners

All algorithms, except the In-Memory join and their

optimizations are sensitive to the data skew. This

section describes two techniques of the default hash

partitioner replacement.

A Simple Range-based Partitioner [4] (this kind similar

to the Skew join in [14]) applies a range vector of

dimension n constructed from the join keys before

starting a MR job. By this vector join keys will be

splitted into n parts, where n is the number of Reduce

jobs. Ideally partitioner vector is constructed from the

whole original set of keys, in practice a certain number

of keys is chosen randomly from the data set. It is

known that the optimal number of keys for the vector

construction is equal to the square root of the total

number of tuples. With a heavy data skew into a single

key value, some elements of the vector may be

identical. If the key belongs to multiple nodes, a node is

selected randomly in the case of data on which to build

a hash table, otherwise the key is sent to all nodes (to

save memory as a hash table is contained in the

memory).

Virtual Processor Partitioner [4] is an improvement of

the previous algorithm based on increasing the number

of partition. The number of parts is specified multiple of

the tasks number. The approach tends to load the nodes

with the same keys uniformly (compared with the

previous version). The same keys are scattered on more

nodes than in the previous case.

Job 1: find keys which are present in two datasets

 Map (K:null, V from R or L)

 Tag = bit from name of R or L;

 emit (Key,Tag);

 Reduce (K’: join key, LV: list of V with key K’)

 Val = first value from LV;

 for t in LV do

 if (not Val==Val2) then

 emit (null, K’);

Job 2: before joining it is necessary to filter the smaller

dataset by keys from the Job 1 that will be loaded into

hash map. Then the bigger dataset is joined with filtered

one.

Job 1: find unique keys

 Map (K:null, V from L)

 Create HashMap H;

 if (not Key in H) then

 add Key to H;

 emit (Key, null);

 Reduce (K’: key, LV) //only one Reducer

 emit (null,key);

Job 2: filter dataset

 init() //for Map phase

 add to HashMap H unique keys from job 1;

 Map (K:null, V from R)

 if (Key in H) then

 emit (null,V);

Job 3: do join with L dataset and filtered dataset from

Job 2.

Job 1: construct Bloom filter

 Map (K:null, V from L)

 Add Key to BloomFilter Bl

 close() //for Map phase

 emit(null, Bl);

 Reduce (K’: key, LV) //only 1 Reducer

 for l in LV do

 union filters by operation Or

 close() // for Reduce phase

 write resulting filter into file;

Job 2: filter dataset

 init() //for Map phase

 read filter from file in Bl

 Map (K:null, V from R)

 if (Key in Bl) then

 emit (null, V);

Job 3: do join with L dataset and filtered dataset from

Job 2.

www.manaraa.com

Listing 8: The range partitioners.

3.5 Distributed cache

The advantage of using distributed cache is that data set

are copied only once at the node. It is especially

effective if several tasks at one node need the same file.

In contrast the access to the global file system needs

more communication between the nodes. Better

performance of the joins without the cache can be

achieved by increasing number of the files replication,

so there's a good chance to access the file version

locally.

4 Cost model

Due to significant differences between parallel DBMS

and MapReduce, the MapReduce paradigm requires

another optimization techniques based on indexing and

compression, programming models, data distribution

and query execution strategy. Therefore, we need a

different strategy of designing model cost. There are

two types of designing cost models: the task execution

simulation [29] and analytical cost calculation [15, 24].

To measure the query parallelism effectiveness, it is

need to build a cost model that can describe the

behavior of each algorithm for parallel query.

Analytical model is cost formulas that are used to

calculate the query execution time, taking into account

the specific of parallel algorithm. Below, analytical

cost model for join algorithms and their optimizations

will be constructed.

4.1Configuration settings

Execution of MR program depends on input data

statistic such as selectivity, skew, compression, on

cluster resource such as number of nodes, on

configuration parameters, such as I/O cost, and on

properties of specific algorithm. Below, the parameters

used in the analysis are presented in table.

Variable Description

s(x) Size of x in mb

p(x) Number of pairs for split x

wid Pair width

ct The average computation time needed per

pair

pC The cost for partition

sC The cost for serialization

sortC The cost for sorting on keys

cC The cost for executing combine function

mC The cost for merge

selP Selectivity of pairs

selC Selectivity of combining

|red| Number of reducers

|map| Number of mappers

rh The cost for reading from HDFS

wh The cost for writing to HDFS

rwl The cost for local I/O operations

tC The cost of network transfer

sortMB io.sort.mb parameter in Hadoop

configuration

sortRP io.sort.record.percent

sortSP io.sort.spill.percent

F io.sort.factor

shuBP mapred.job.shuffle.input.buffer.percent

shuMP mapred.job.shuffle.merge.percent

memMT mapred.inmem.merge.threshold

memT mapred.child.java.opts

redBP mapred.job.reduce.input.buffer.percent

4.2 Cost of arbitrary MR program

As mentioned above, the MR job consists of the

execution stages, thus it is possible to estimate each

phase separately. Job may contain the following stages:

Setup, Read (read map input), Map (map function),

Buffer (serializing to buffer, partitioning, sorting,

combining, compressing, write output data to local

disk), Merge (merging spill files), Shuffle (transferring

map output to reducers), MergeR(merging received

files), Reduce (reduce function), Write (writing result to

the HDFS), Cleanup. Due to the fact that the job of MR

program carried out in parallel or in waves, it is possible

to calculate the approximate total cost of the job

//before the MR job starts

// optimal max = sqrt(|R|+|L|)

getSamples (Red:the number of reducers, max: the max

 number of samples)

 C = max/Splits.length;

 Create buffer B;

 for s in Splits of R and L do

 get C keys from s;

 add it to B;

 sort B;

 //in case simple range partitioner P == 1

 //in case virtual range partitioner P > 1

 for j<(Red*P) do

 T = B.length/(Red*P)*(j+1);

 write into file B[T];

Map(K:null, V from L or R)

 Tag = bit from name of R or L;

 read file with samples and add samples to Buffer B;

 //in case virtual partition it is needed to

 // each index mod |Reducers|

 Ind = {i: B[i-1] < Key <= B[i]}

 // Ind may be array of indexes in skew case

 if (Ind.length >1) then

 if (V in L) then

 node = random(Ind);

 emit (pair(Key, node), pair(V, Tag));

 else

 for i in Ind do

 emit (pair(Key, i), pair(V, Tag));

 else

 emit (pair(Key, Ind), pair(V, Tag));

Partitioner (K:key, V:value, P:the number of reducers)

 return K.Ind;

Reducer (K’: join key, LV: list of V’ with key K’)

 The same as GRSJ

www.manaraa.com

through the cost of one task (one mapper and one

reducer). The jobCost take into account the parallel

threads of execution and compute the total cost of MR

job, where cm and cr are costs of one task mapper or

reducer respectively, MaxMN and MaxRN are

maximum map tasks or reduce task per node.

tr

rm

job c
MaxRNnodes

cred

MaxMNnodes

cmap
Cost

*||

*||

*||

*||

This formula is bad for the skew data, when one task is

time consuming.

otherwiseccc

redсccс
с

WriteMapread

mergeBufferMapread

m
,

0||,
,

WritereducemergeRshuffler ccccc .

CMap and creduce are the cost of user-define functions, so

for each join algorithm it is calculated by the own

formula. Another cost values from (cread, cBuffer, cWrite,

cmerge, cmergeR, cshuffle, ct) are common for join algorithms.

Consider these costs in more detail as [15, 24]. Stages

of reading input data from HDFS and writing into

HDFS are calculated by:

hWritehread woutscrsplitsс *)(,*)(,

where split is input split for mapper task, out is the

output data of job. The buffering phase is more

complicated; during this stage three processes take

place: partitioning, sorting and spilling to disk.

||

)(
log*

(*)(*)(

2
red

bufp
sortCcC

sCpCoutmprwsplitsc lBuffer

Where outm is output from map functions, buf is buffer

for this stage. The buffer is divided into two parts, there

are serialization buffer (SB), that contains key-value

pairs and an accounting buffer (AB) that contains the

metadata. So, the number of pairs in buffer is:

)}(),(min{)(ABpSBpbufp

wid

sortSPsortRPsortMB
SBp

*)1(*2*
)(

20

16

**2*
)(

20 sortSPsortRPsortMB
ABp

The number of spilled files (N) from this stage is:

)(

)(

bufp

outp
N

Then all spilled files must be merged with such

features:

 the number of spill files are merged at once is F,

 assume that the following
2FN ,

 at first pass it is merged so spill files that remain

files is multiplies F

 at final merge if needed the combiner will be

used.

The number of spill files equal to sum of spill files at

first pass (S1P), at intermediate pass (SIP) and at final

pass (SFP):

,

1)1mod()1(

0)1mod()1(,

,

1

FN

FNF

FNN

S

2,*

1
1

,0

FNF
F

SN
S

FN

SIP

2,

1
1

,

FNSIPN
F

SN

FNN

SFP

)(**)(

)**2(***)(

NSIPmCbufp

cCNNSIPrwwidbufpc lmerge

After that stage map output transferred to the reducers

(this cost includes the cost for all reducers).

tC
nodes

nodes
mapoutmsctr *

||

|1|
||)(

The data from mappers are transferred by segments to

reducers. Without considering the data skew, it is

assumed that the sizes of segments are the same.

||

)(
)(

red

outms
segs

When segment arrive to the reducer it is placed in

shuffle buffer or if size of segment is greater than 25%

of buffer size then it is spilled into disk without in-

memory buffer. The buffer size is determined by the

configuration parameters as:

.*)(memTshuBPbufs If buffer reaches size

threshold (s(thr)) or the number of segments is greater

than memMT, then segments are merged, sort and spill

into disk. shuMPbufsthrs *)()(. The number of

segments (|segF|) in shuffle file and the number of such

files (|shF|) are:

||

||
||

||,

)(*25,0)(,
)(

)(

)(25,0)(,1

||

segF

map
shF

memMTsegFmemMT

bufssegs
segs

thrs

bufssegs

segF

If the number of shuffle files is greater than (2*F-1)

then all files are merged into one. So, all segments may

be divided on three states: in-memory buffer (segMB),

shuffle unmerged files (segUF) and shuffle merged files

(segMF).

www.manaraa.com

||*||||

1
1*2||

1*2||,0

||

||mod||||

segMFFshFsegUF

F

FshF

FshF

segMF

segFmapsegMB

The cost of shuffle stage is:

0

)(*25,0)(,1

)()(*||*

)(||*||)2*||

|(|***)(*||

bufssegs
I

IcCmCsegpmapmC

segpsegFsegMFsegMF

shFrwselCsegssegFс lsfuffle

Thereafter, segMB,segUF, segMF files must be merged.

Some segments from memory (segE) are spilled to disk

by redBP constraint.

memTredBPsegssegMB

segs

memTredBPsegssegMB

segE

)(||,0

)(

)(||

||

If the number of files from disk is less than F then segE

files are merged separately.

FsegMFsegUF

segssegE
ms

||||,0

)(*||
)1(

After the merging, the number of files from disk is:

||||||

0)1(,1||||
||

segEsegMFsegUF

mssegMFsegUF
segD

Then the process of merging is similar to cmerge, where

N=|segD|.

))()()((*)2(segEssegMFssegUFs
N

SIP
ms

At final it is merged remained files.

)(*||*)3(

||

|)||(|*||

segsmap
N

SIP
ms

segRN

segEsegMBSFPsegR

The final cost of this phase is:

wid

mC
rwmsmsmsс lmergeR *))3()2()1((

Since the join algorithms are known in advance we can

more accurately than the approach in [28] is to estimate

the cost of user-defined functions Map and Reduce.

4.3 Cost model for Reduce-Side join

In case of General reducer-side join, MR program

consists of one job and cost for combining is equal to 0.

In map function source tag is assign to each pair

(consider that input map pair is equal to output map

pair):

30,00000095,*)(widwidcoutmpс t

GRSJ

Map

In reduce function pairs with different tags are joined

(nested-loop):

t

GRSJ

reduce cinprpselР
inprp

с *)(*
2

)(
2

As opposite to General reducer-side join, the cost of

Optimized reducer-side join includes the cost of

combine function and the cost of reduce function is less

then
GRSJ

reduceс :

t

ORSJ

reduce cselР
inprpinprp

с **
2

)(

2

)(
2

 ,

7340,00000190, widwidсс GRSJ

Map

ORSJ

Map

In contrast to the previous join, MR program of the

Hybrid Hadoop join consist of pre-processing job and

join job. The pre-processing job is partition one dataset

into |red| parts, and besides these partitions may be got

from other MR job or from default MR job. The costs

of default map and reduce functions are:

 t

prep

reduce

prep

Map cinpcс *)1(

There are two ways to deliver full one dataset to the

mapper: read file from HDFS or by using distributed

cache. And if distributed cache is used then the

necessary files are copied to the slave nodes before the

job is started. So, the ctr cost is added. The costs of with

and without distributed cache deliver are:

cachec tl cinpwrins *)1(*)1(

thhdfs cinprinsc *)1(*)1(

The map and reduce functions costs of join job are:

thdfs

tcachehyb

reduce

prep

Map

hyb

Map

cselРinpinpc

cselРinpinpc
c

inсс

**)2(*)1(

**)2(*)1(

),2(

4.4 Cost model for Map-Side join

The join job doesn’t have reducer phase.

Map-side partition join consists of pre-processing jobs

for two input datasets (or partitions are got from another

job) and join job.

The map function of join job is:
hyb

reduce

MSPJ

reduce сc

In-Memory Join the small dataset (in1) is broadcast to

all reducers.

thdfs

tcache

IMMJ

Map

cselР
red

inp
inpc

cselР
red

inp
inpc

с

**
||

)1(
*)2(

**
||

)1(
*)2(

www.manaraa.com

In reversed join the datasets are reversed, in2 (the

bigger one) is broadcast, in1 is split of smaller dataset

and it is loaded in hash table.

t

ht

t

lt

rev

Map

cselР
red

inp

inprinpcinp

cachecselР
red

inp

inpwrinpcinp

с

**
||

)2(
*

)1()2(*)1(

,**
||

)2(
*

)1()2(*)1(

Multi-phase map join cost equal to sum of immj job

costs. The number of summands is 1
)1(

memT

ins
.

4.5 The semi-join cost

The semi-join with selection consists of two jobs:

finding unique keys and filter the dataset by unique

keys. The cost of map function of finding unique keys is

sum of filling hash table and producing the output costs.

The input for this job is one dataset.

t

find

Map cinpс *2*)1(. The reduce function of that

job is run on the one reducer and the same as default

reduce function.

The filtering job consists of one map phase, where the

file with unique key from previous job is loaded into

hash table and then the split of another dataset is probe.

thdfs

tcachefil

Map cinpc

cinpc
с

*)(

*)(

The Adaptive semi-join is similar to reduce-side join.

The two datasets are read and tagged by label in map

function. And at reducer the pairs with different tags are

output. The cost is equal to default job. But at the actual

join it is needed to add some cost of loading file with

unique keys, filling hash table and filtering useless pairs

as
fil

Mapс .

 In case of semi-join with bloom-filter the program

consists of two jobs: creating bloom filter and filtering

the dataset. In the map function, bloom filter for split

constructed and the output all filter as one pair.

lobloomscinpс t

bloom

Map *)(*)1(

Where lo is the cost for processing bloom filter. The

reducer is one and it is combine all bloom-filter into

one.

lobloomsmapсbloomduce *)(*||Re

At another job the constructed bloom-filter is loaded

and the second dataset is probed.

th

filb

Map cinprbloomsс *)2(*)(

5 Experiments

5.1 Dataset

Data are the set of tuples, which attributes are separated

by a comma. Tuple is split into a pair of a key and a

value, where value is the remaining attributes.

Generation of synthetic data was done as in [4]. Join

keys are distributed randomly.

5.2 Cluster configuration

Cluster consists of three virtual machines, where one of

them is master and slave at the same time, the

remaining two are the slaves. Host configuration

consists of 1 processor, 512 mb of memory for the

master, for others nodes have by 512 mb, 5 gb is the

disk size. Hadoop 20.203.0 runs on Ubuntu 10.10.

5.3 The General Case

The base idea of this experiment is to compare

executions time of different phases of various

algorithms. Some parameters are fixed: the number of

Map and Reduce tasks is 3, the input size is

10000*100000 and 1000000*1000000 tuples.

Figure 1: Executions time of different phases of various

algorithms. Size 10000*100000.

Figure 2: Executions time of different phases of various

algorithms. Size 1000000*1000000.

For a small amount of data, Map phase, in which all

tuples are tagged, and Shuffle phase, in which data are

transferred from one phase to another, are more costly

in Reduce-Side joins. It should be noted that GRSJ is

better than ORSJ on small data, but it is the same on big

data. It is because in first case time does not spend on

combining tuples. Possible, on the larger data ORSJ

outperform GRSJ when the usefulness of grouping by

key will be more significant. Also for algorithms with

pre-processing more time are spent on partitioning data.

The algorithms in memory (IMMJ and REV) are similar

in small data. Two algorithms are not shown in the

graph because of their bad times: JDBM-based map join

and Multi-phase map join. In large data IMMJ

www.manaraa.com

algorithm could not be executed because of memory

overflow.

5.4 Semi-Join

The main idea of this experiment is to compare different

semi-join algorithms. These parameters are fixed: the

number of Map and Reduce tasks is 3, the bitmap size

of Bloom-filter is 2500000, the number of hash-

functions in Bloom-filter is 173, built-in Jenkins hash

algorithm is used in Bloom-filter. Adaptive semi-join

(ASGRSJ) does not finish because of memory

overflow. The abbreviation of Bloom-filter semi-join

for GRSJ is BGRSJ. The abbreviation of semi-join with

selection for GRSJ is SGRSJ respectively.

Figure 3: Comparison of different semi-join implementations.

5.5 Distributed cache

In [21] was showed that using of distributed cache is

not always good strategy. They suggested that the

problem can be a high speed network. This experiment

was carried out for Reversed Map-Side join, because for

which a distributed cache can be important. Replication

was varied as 1, 2, 3 and size of data is fixed –

1000000*1000000 tuples. When data is small, the

difference is not always visible. In large data algorithms

with distributed cache outperform approach of reading

from a globally distributed system.

Figure 4: Performance of Reversed Map-Side join with and

without using distributed cache.

5.6 Skew data

It is known that many of the presented algorithms are

sensitive to the data skew. In this experiment take part

such algorithms as Reduce-side join with Simple

Range-based Partitioner for GRSJ (GRSJRange) and

Virtual Processor Partitionerfor GRSJ (GRSJVirtual),

and also for comparing in memory join: IMMJ, REV

because of resistant to the skew. Fixed parameters are

used: size of two dataset is 2000000, one of the data set

has skew 500000 of 5, and another has 10 or 1 of 5. In

case with IMMJ was memory overflow.

Figure 5: Processing the data skew.

 Although these experiments do not completely cover

the tuneable set of Hadoop parameters, they are shown

the advantages and disadvantages of the proposed

algorithms. The main problems of these algorithms are

time spent on pre-processing, transferring data, the data

skew, and memory overflow.

 Each of the optimization techniques introduces

additional cost to the implementation of the join, so the

algorithm based on the tuneable settings and specific

data should be carefully chosen. Also important are the

parameters of the network bandwidth when distributed

cache are used or not used and a hardware specification

of nodes because of it is importance when speculative

executions are on. Speculative execution reduces

negative effects of non-uniform performance of

physical nodes.

 Based on the collected statistics such as data size,

how many keys will be taking part in the join, these

statistics may be collected as well as the construction of

a range partitioner, the query planner can choose an

efficient variant of the join. For example, in [5] was

proposed what-if analyses and cost-based optimization.

6 Future work

The algorithms discussed in this paper, only two sets

are joined. It is interesting to extend from binary

operation to multi argument joins. Among the proposed

algorithms, there is no effective universal solution.

Therefore, it is necessary to evaluate the proposed cost

models for join algorithms. And for this problem it is

need to use real cluster with more than three nodes in it

and more powerful to process bigger data, due to the

fact that the execution time on the virtual machine may

be different from the real cluster in reading/writing,

transferring data over the network and so on.

 Also the idea of processing the data skew in

MapReduce applications from [19] can be applied to the

join algorithms. Another direction to future work is to

extend algorithm to support a theta-join and outer join.

An interesting area for future work is to develop,

implement and evaluate algorithms or extended

algebraic operations suitable for complex similarity

www.manaraa.com

queries in an open distributed heterogeneous

environment. The reasons to evaluate complex

structured queries are: a need to combine search criteria

for different types of information; a query refinement

e.g. based on user profile or feedback; advanced users

may need query structuring. The execution model and

algebraic operation to be implemented are outlined in

[31]. The main goal is to solve the problems presented

in [8] as a problem.

 In addition, one of the issues is efficient physical

representation of data. Binary formats are known to

outperform the text both in speed reading and

partitioning key / value pairs, and the transmission of

compressed data over the network. Along with the

binary data format, column storage has already been

proposed for paradigm MapReduce. It is interesting to

find the best representation for specific data.

7 Conclusion

In this work we describe the state of the art in the area

of massive parallel processing, presented our

comparative study of these algorithms, cost models and

our outline directions of future work.

References

[1] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem.

Column-stores vs. row-stores: how different are they

really? In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data,

SIGMOD ’08, pages 967–980, New York, NY, USA,

2008. ACM.

[2] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel

Abadi, Avi Silberschatz, and Alexander Rasin.

Hadoopdb: an architectural hybrid of mapreduce and

dbms technologies for analytical workloads. Proc. VLDB

Endow., 2:922–933, August 2009.

[3] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins

in a map-reduce environment. In Proceedings of the 13th

International Conference on Extending Database

Technology, EDBT ’10, pages 99–110, New York, NY,

USA, 2010. ACM.

[4] Fariha Atta. Implementation and analysis of join

algorithms to handle skew for the hadoop mapreduce

framework. Master’s thesis, MSc Informatics, School of

Informatics, University of Edinburgh, 2010.

[5] Shivnath Babu. Towards automatic optimization of

mapreduce programs. In Proceedings of the 1st ACM

symposium on Cloud computing, SoCC ’10, pages 137–

142, New York, NY, USA, 2010. ACM.

[6] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun

Rao, Eugene J. Shekita, and Yuanyuan Tian. A

comparison of join algorithms for log processing in

mapreduce. In Proceedings of the 2010 international

conference on Management of data, SIGMOD ’10, pages

975–986, New York, NY, USA, 2010. ACM.

[7] A Chatzistergiou. Designing a parallel query engine over

map/reduce. Master’s thesis, MSc Informatics, School of

Informatics, University of Edinburgh, 2010.

[8] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard

Weikum. Integrating db and ir technologies: What is the

sound of one hand clapping? In CIDR, pages 1–12, 2005.

[9] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M.

Hellerstein, and Caleb Welton. Mad skills: new analysis

practices for big data. Proc. VLDB Endow., 2:1481–

1492, August 2009.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a

flexible data processing tool. Commun. ACM, 53:72–77,

January 2010.

[11] Jeffrey Dean, Sanjay Ghemawat, and Google Inc.

Mapreduce: simplified data processing on large clusters.

In In OSDI04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design &

Implementation. USENIX Association, 2004.

[12] Leonidas Fegaras, Chengkai Li, and Upa Gupta. An

optimization framework for map-reduce queries. In

EDBT 2012, march 2012.

[13] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita,

and Sandeep Tata. Column-oriented storage techniques

for mapreduce. Proc. VLDB Endow., 4:419–429, April

2011.

[14] Alan F Gates. Programming Pig. O’Reilly Media, 2011.

[15] Herodotos Herodotou. Hadoop performance models.

CoRR, abs/1106.0940, 2011.

[16] Herodotos Herodotou and Shivnath Babu. Profiling,

what-if analysis, and cost-based optimization of

mapreduce programs. PVLDB, 4(11):1111– 1122, 2011.

[17] Eaman Jahani, Michael J. Cafarella, and Christopher R´e.

Automatic optimization for mapreduce programs. Proc.

VLDB Endow., 4:385–396, mar 2011.

[18] Dawei Jiang, Anthony K. H. Tung, and Gang Chen.

Map-join-reduce: Toward scalable and efficient data

analysis on large clusters. IEEE Transactions on

Knowledge and Data Engineering, 23:1299– 1311, 2011.

[19] YongChul Kwon, Magdalena Balazinska, Bill Howe, and

Jerome Rolia. A study of skew in mapreduce

applications. Moskow, Russia, june 2011. In the 5th

Open Cirrus Summit.

[20] Yuting Lin, Divyakant Agrawal, Chun Chen, Beng Chin

Ooi, and Sai Wu. Llama: leveraging columnar storage for

scalable join processing in the mapreduce framework. In

Proceedings of the 2011 international conference on

Management of data, SIGMOD ’11, pages 961–972,

New York, NY, USA, 2011. ACM.

[21] Gang Luo and Liang Dong. Adaptive join plan

generation in hadoop. Technical report, Duke University,

2010.

[22] Christine Morin and Gilles Muller, editors. European

Conference on Computer Systems, Proceedings of the

5th European conference on Computer systems, EuroSys

2010, Paris, France, April 13-16, 2010. ACM, 2010.

[23] Alper Okcan and Mirek Riedewald. Processing theta-

joins using mapreduce. In Proceedings of the 2011

international conference on Management of data,

SIGMOD ’11, pages 949–960, New York, NY, USA,

2011. ACM.

[24] Konstantina Palla. A comparative analysis of join

algorithms using the hadoop map/reduce framework.

Master’s thesis, MSc Informatics, School of Informatics,

University of Edinburgh, 2009.

www.manaraa.com

[25] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J.

Abadi, David J. DeWitt, Samuel Madden, and Michael

Stonebraker. A comparison of approaches to large-scale

data analysis. In Proceedings of the 35th SIGMOD

international conference on Management of data,

SIGMOD ’09, pages 165–178, New York, NY, USA,

2009. ACM.

[26] Donovan A. Schneider and David J. DeWitt. A

performance evaluation of four parallel join algorithms in

a shared-nothing multiprocessor environment. SIGMOD

Rec., 18:110–121, June 1989.

[27] Rares Vernica, Michael J. Carey, and Chen Li. Efficient

parallel set-similarity joins using mapreduce. In

Proceedings of the 2010 international conference on

Management of data, SIGMOD ’10, pages 495–506,

New York, NY, USA, 2010. ACM.

[28] Vertica Systems, Inc. Managing Big Data with Hadoop

& Vertica, 2009.

[29] Guanying Wang, Ali Raza Butt, Prashant Pandey, and

Karan Gupta. A simulation approach to evaluating design

decisions in mapreduce setups. In MASCOTS, pages 1–

11. IEEE, 2009.

[30] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D.

Stott Parker. Map-reduce-merge: simplified relational

data processing on large clusters. In Proceedings of the

2007 ACM SIGMOD international conference on

Management of data, SIGMOD ’07, pages 1029–1040,

New York, NY, USA, 2007. ACM.

[31] Anna Yarygina, Boris Novikov, and Natalia Vassilieva.

Processing complex similarity queries: A systematic

approach. In Maria Bielikova, Johann Eder, and A Min

Tjoa, editors, ABDIS 2011 Research Communications:

Proceedings II of the 5th East-European Conference on

Advances in Databases and Information Systems 20 – 23

September 2011, Vienna, pages 212–221. Austrian

Computer Society, September 2011.

[32] Minqi Zhou, Rong Zhang, Dadan Zeng, Weining Qian,

and Aoying Zhou. Join optimization in the mapreduce

environment for column-wise data store. In Proceedings

of the 2010 Sixth International Conference on Semantics,

Knowledge and Grids, SKG ’10, pages 97–104,

Washington, DC.

